Appendix 1

2019

Chief Mistawasis Bridge Traffic Assessment

10/9/2019

This page intentionally left blank

1.	Introdu	ction	1
2.	Bridge	Traffic Comparison	2
3.	-	Segment Review	
4.	Interse	ction Analysis – Signalized Intersections	5
5.	Interse	ction Analysis – Unsignalized Intersections	8
6.	Summa	ary	. 10
	6.1	Bridge Traffic Comparison	. 10
	6.2	Road Segment Review	. 10
	6.3	Intersection Recommendations	. 10
App	endix 1	Intersection Analysis – Signalized Intersections	. 11
App	endix 2	Intersection Analysis – Unsignalized Intersections	. 16
App	endix 3	Traffic Signal Warrants	. 18
App	endix 4	Circle Drive and Idylwyld Drive Interchange	. 23

1. Introduction

The Chief Mistawasis Bridge and the Traffic Bridge opened in October 2018. This report outlines the traffic impacts due to the bridge openings. Assessments are as follows:

- Bridge Traffic Comparisons
- Road Segment Review
- Intersection Analysis

The study locations are illustrated in Figure 1.

Figure 1: Study Locations

2. Bridge Traffic Comparison

The Average Daily Traffic observed on Saskatoon's bridges is illustrated in Figure 2. The data was collected in early 2019.

Figure 2: Average Daily Traffic – Bridges

A review of the information presented in the figure above yields the following observations:

- The Chief Mistawasis Bridge has been operating with approximately 10,000 vehicles per day (vpd) since opening, resulting in a reduction of approximately 10,000 vpd on the Circle Drive North Bridge.
- The re-opened Traffic Bridge has been operating at approximately 12,000 vpd. There may be some impact to this volume due to construction on the nearby Sid Buckwold Bridge.
- Traffic volumes on the remaining bridges are relatively unchanged since the opening of the two new bridges.

3. Road Segment Review

The street network is comprised of various street types, each of which performs a particular function in facilitating the way people and goods move through and within the city. The City of Saskatoon street classifications characteristics for the street types included in the study are summarized in Table 1.

	Collec	tors	Arte	rials	Expressways/ Freeways	
Characteristic	Residential	Commercial	Minor	Major		
Traffic Service Function	Traffic move land access importa	s of equal	Traffic movement major consideration	movement movement major primary		
Typical Traffic Volume (veh/day)	<5,000	8,000 to 10,000	5,000 to	>10,000 / >20,000		
Traffic Flow Characteristics	Interrupte	ed flow		Uninterrupted flow except at signals and crosswalks		
Typical Posted Speed Limits (kph)	50		50 te	o 70	80 to 90	
Typical Vehicle Type	Passenger and service vehicles	All types	All types	All types, large portion of trucks	All types, large portion of trucks	

Table 1: City of Saskatoon Street Classifications Characteristics

The before and after Average Daily Traffic volumes for a number of various street segments are presented in Table 2.

Table 2: Road Segment Traffic Changes

Segment	Road	Prev Observ		2019	Change
	Classification	Year	AADT	ADT	
Chief Mistawasis Bridge	Major Arterial	-	-	9,900	-
Circle Drive (North) Bridge	Expressway	2018	79,300	69,500	-9,800
University Bridge	Major Arterial	2017	43,100	43,500	+400
Broadway Bridge	Major Arterial	2018	17,900	16,200	-1,700
Traffic Bridge	Commercial Collector	2018	6,100	12,000	+5,900
Sid Buckwold Bridge	Freeway	2017	45,400	38,900	-6,500
Gordie Howe Bridge	Freeway	2018	43,500	41,900	-1,600
Marquis Drive (Millar Avenue – Arthur Rose Avenue)	Major Arterial	2017	5,300	7,800	+2,500
Central Avenue (Attridge Drive – Konihowski Road)	Major Arterial	2015	9,300	13,500	+4,200
Central Avenue (Attridge Drive – 115 th Street)	Major Arterial	2018	11,000	13,200	+2,200
Lowe Road (Nelson Road – Evergreen Boulevard)	Commercial Collector	2016	6,500	5,500	-1,000
McOrmond Drive (Stensrud Road – Baltzan Boulevard)	Major Arterial	2016	7,600	13,200	+5,600
Wanuskewin Road (south of Marquis Drive)	Major Arterial	2016	10,800	9,800	-1,000
McOrmond Drive (Kerr Road – College Drive)	Major Arterial	2016	39,200	25,100	-14,100
McOrmond Drive (South of College Drive)	Major Arterial	New in 2019	-	9,000	-

Note: AADT = Annual Average Daily Traffic, ADT = Average Daily Traffic,

A review of the information presented in the table above yields the following observations:

- In general, the streets directly connected to the new Chief Mistawasis Bridge saw increased daily traffic.
- Previous alternate routes connecting to the Circle Drive North Bridge saw some decreases.

4. Intersection Analysis – Signalized Intersections

The North American traffic engineering standard for measuring the performance of a signalized intersection is to measure the *average delay* in seconds a driver will experience in completing a maneuver. The software used to analyze the intersection calculates an average delay to each movement based on the traffic volumes, permitted movements and signal timing. This average delay corresponds to established Levels of Service (LOS). The LOS can range from A to F (the shorter the average delay the better the LOS, the longer the average delay the worse the LOS). Generally, the City prefers to avoid LOS E and F. However, a LOS E or F does not indicate the need for or trigger improvements. Other considerations include: the traffic volume performing the problematic movement with LOS E or F, intersection geometrics and signal operation, intersection spacing, road classification, availability of alternate routes, pedestrian movements, access management, type of adjacent land use, future development in the area and cost. A summary of the Level of Service characteristics for signalized intersections is provided in Table 3.

Average Control Delay (sec./veh.)	Level of Service	General Description
<= 10	A	Free Flow
>10 to 20	В	Stable Flow (slight delays)
>20 to 35	С	Stable Flow (acceptable delays)
>35 to 55	D	Approaching unstable flow (tolerable delay, occasional wait through more than one signal cycle before proceeding)
>55 to 80	E	Unstable flow
>80	F	Forced flow

Table 3: Level of Service Characteristics (signalized)

Detailed intersection analysis, including weekday AM and PM peak hours, was completed for the following signalized intersections:

- Marquis Drive and Wanuskewin Drive
- Marquis Drive and Arthur Rose Avenue
- Marquis Drive and Idylwyld Drive
- Marquis Drive and Highway 16
- 51st Street and Warman Road
- 51st Street and Millar Avenue
- Circle Drive and Idylwyld Drive
- Attridge Drive and Central Avenue
- Attridge Drive and Berini Drive
- McOrmond Drive and Kerr Road

A summary of the analysis for each intersection is provided in Table 4. Detailed analysis results for each intersection movement is provided in Appendix 1.

	Weekda	ay AM Peak	Hour	Weeko	lay PM Peak	Hour
Intersection	Max v/c ratio	Average Delay (s)	LOS	Max v/c ratio	Average Delay (s)	LOS
Marquis Drive and Wanuskewin Drive	0.53	24.6	С	0.8	35.7	D
Marquis Drive and Arthur Rose Avenue	0.63	15.7	В	0.91	23.1	С
Marquis Drive and Idylwyld Drive	1.28	59.9	E	2.29	163.4	F
Marquis Drive and Highway 16	0.62	37.4	D	0.58	32.3	С
51st Street and Warman Road	0.82	38.3	D	1.11	44	D
51st Street and Millar Avenue	0.84	38.7	D	1.83	177.5	F
Circle Drive and Idylwyld Drive	0.72	20.7	С	1.05	55	E
Attridge Drive and Central Avenue	0.88	33	С	0.99	68.2	Е
Attridge Drive and Berini Drive	0.83	24	С	0.85	21.4	С
McOrmond Drive and Kerr Road	0.75	18.7	В	0.74	21.4	С

Table 4: Intersection Analysis – Signalized Intersections

v/c – volume to capacity; LOS – Level of Service

A review of the information provided in the table above and Appendix 1 yield the following observations:

- Marquis Drive and Idylwyld Drive multiple intersection movements, notably eastbound and westbound movements, provide a poor LOS with significant delays in both AM and PM peak hours.
- 51st Street and Millar Avenue multiple intersection movements, notably southbound and northbound movements, provide a poor LOS with significant delay mostly in the weekday PM peak hour.
- Circle Drive and Idylwyld Drive multiple intersection movements, in all directions, provide a poor LOS with significant delay mostly in the weekday PM peak hour.
- Attridge Drive and Central Avenue multiple intersection movements, in all directions, provide a poor LOS with significant delay mostly in the weekday PM peak hour.

The following is recommended:

- In the short-term, continue to monitor and adjust signal timings at impacted intersections.
- As part of the North Saskatoon Transportation Study include an intersection improvement plan for the intersection of Marquis Drive and Idylwyld Drive.
- Begin stakeholder consultation for the previously identified required improvement at the intersection of 51st Street and Millar Avenue.
- Revisit the previously completed functional planning study for the Circle Drive and Idylwyld Drive interchange once Phase 1 of the Saskatoon Freeway Functional Planning project is complete. More details are provided in Appendix 4.
- Complete an intersection improvement study for the intersections of Attridge Drive and Central Avenue in advance of the Bus Rapid Transit (BRT) project.

5. Intersection Analysis – Unsignalized Intersections

Details of the Level of Service for unsignalized intersections is provided in Table 5.

Average Control	Level of	General
Delay (sec./veh.)	Service	Description
<= 10	A	Free Flow
>10 to 15	В	Stable Flow (slight delays)
>15 to 25	С	Stable Flow (acceptable delays)
>25 to 35	D	Approaching unstable flow (tolerable delay, occasional wait through
		more than one signal cycle before proceeding)
>35 to 50	E	Unstable flow
>50	F	Forced flow

Table 5: Level of Service Standards (unsignalized)

Detailed intersection analysis was completed for the following unsignalized intersections:

- McOrmond Drive and Stensrud Road (north)
- Central Avenue and Reid Road/Rossmo Road
- Lowe Road and Nelson Road
- Lowe Road and Ludlow Street
- Kerr Road and Kenderdine Road

A summary of the analysis for each of the unsignalized intersections is provided in Table 6. In addition, assessments were conducted to determine the need for traffic signals in adherence to the Traffic Signal and Pedestrian Signal Head Warrant Handbook. A warrant system assigns points for a variety of conditions including:

- Number of traffic lanes;
- Posted speed limit of the street;
- Distance to the nearest protected traffic signal; and
- Number of pedestrians and vehicles at the location.

Pedestrians and traffic data was collected during the peak hours of 7:00 a.m. to 9:00 a.m., 11:30 a.m. to 1:30 p.m., and 4:00 p.m. to 6:00 p.m. Full details of the intersection analysis for the unsignalized locations are provided in Appendix 2. Traffic Signal Warrants are provided in Appendix 3.

	Wee	Weekday AM Peak Hour			ay PM Peak	Traffic Signal	
Intersection	Max v/c	Average Delay	LOS	Max v/c	Average Delay	LOS	Warrant
	ratio	(s)		ratio	(s)		
McOrmond Drive and Stensrud Road (north)	0.42	3.3	A	0.52	2.8	A	56 (Traffic Signal NOT warranted)
Central Avenue and Reid Road / Rossmo Road	0.52	5.5	A	1.17	16.5	С	74 (Traffic Signal NOT warranted)
Lowe Road and Nelson Road	0.61	18.9	С	0.63	20.4	С	112 (Traffic Signal warranted)
Lowe Road and Ludlow Street	0.6	4.8	В	0.62	8.7	В	86 (Traffic Signal NOT warranted)
Kerr Road and Kenderdine Road	0.44	9.8	A	1.02	37.1	E	66 (Traffic Signal NOT warranted)

Table 6: Intersection Analysis – Unsignalized Intersections

A review of the information provided in Table 5, Table 6, Appendix 2 and Appendix 3 yield the following observations:

- Traffic signals are not warranted at the intersection of McOrmond Drive and Stensrud Road (north), the intersection of Central Avenue and Reid Road/ Rossmo Road, the intersection of Lowe Road and Ludlow Street.
- Traffic signals are warranted at the intersection of Lowe Road and Nelson Road.
- At the intersection of Kerr Road and Kenderdine Road there is a poor LOS for the southwest bound movement in the weekday PM peak hour.

The following is recommended:

- Place the intersection of Lowe Road and Nelson Road on the prioritization list for intersections to be signalized.
- Adjust lane designations (i.e. signs and pavement markings) at the intersection of Kerr Road and Kenderdine Road.

6. Summary

6.1 Bridge Traffic Comparison

The Chief Mistawasis Bridge has been operating with approximately 10,000 vpd, resulting in a reduction of approximately 10,000 vpd on the Circle Drive North Bridge. The Traffic Bridge has been operating at approximately 12,000 vpd. There may be some impact to the volume due to construction of the nearby Sid Buckwold Bridge.

Traffic volumes on the remaining bridges are relatively unchanged since the opening of the two new bridges.

6.2 Road Segment Review

In general, the streets directly connected to the new Chief Mistawasis Bridge saw increased daily traffic, and previous alternate routes connecting to the Circle Drive North Bridge saw some decreases.

6.3 Intersection Recommendations

The following is recommended:

- 1. In the short-term, continue to monitor and adjust signal timings at impacted intersections.
- 2. As part of the North Saskatoon Transportation Study include an intersection improvement plan for the intersection of Marquis Drive and Idylwyld Drive.
- 3. Begin stakeholder consultation for the previously identified required improvement at the intersection of 51st Street and Millar Avenue.
- 4. Revisit the previously completed functional planning study for the Circle Drive and Idylwyld Drive interchange once Phase 1 of the Saskatoon Freeway Functional Planning project is complete.
- 5. Complete an intersection improvement study for the intersections of Attridge Drive and Central Avenue in advance of the BRT project.
- 6. Place the intersection of Lowe Road and Nelson Road on the prioritization list for intersections to be signalized.
- 7. Adjust lane designations (i.e. signs and pavement markings) at the intersection of Kerr Road and Kenderdine Road.

Appendix 1: Intersection Analysis – Signalized Intersections

			Weekday A	M Peak H	lour	Weekday PM Peak Hour			
Mov	Movement		Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
	LT	0.49	35.2	D	45.8	0.74	57.5	Е	77.7
SB	Thru	0.53	28.5	С	56.8	0.29	25.6	С	45.0
	RT	0.27	4.0	А	9.1	0.05	0.2	А	0
	LT	0.32	33.0	С	28.4	0.31	51.9	D	23.6
NB	Thru	0.32	30.8	С	24.8	0.80	43.7	D	99.0
	RT	0.08	0.4	А	0	0.34	6.8	А	16.5
	LT	0.06	34.9	С	6.7	0.27	39.0	D	26.1
EB	Thru	0.11	26.2	С	13.2	0.70	39.2	D	94.6
	RT	0.03	0.1	А	0	0.05	0.1	А	0
	LT	0.24	34.9	С	17.9	0.20	49.1	D	13.3
WB	Thru	0.51	24.9	С	71.0	0.26	41.3	D	23.7
	RT	0.22	2.7	А	6.3	0.38	5.8	А	10.6
	Intersection Summary		Average 24.6	С	-	Max 0.80	Average 35.7	D	-

Marquis Drive and Wanuskewin Drive

Marquis Drive and Arthur Rose Avenue

		١	Neekday A	M Peak H	Hour	Weekday PM Peak Hour				
Мс	Movement		Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)	
SB	LT/Thru/RT	0.05	5.1	А	5.1	0.10	6.4	А	7.9	
NB	LT/Thru/RT	0.29	10.9	В	22.9	0.24	8.6	А	16.2	
EB	LT	0.54	29.6	С	21.1	0.09	12.9	В	7.0	
ED	Thru/RT	0.23	7.2	А	10.7	0.91	28.7	С	88.2	
WB	LT	0.14	13.6	В	8.5	0.34	21.7	С	11.1	
VVB	Thru/RT	0.69	19.0	В	46.8	0.20	13.0	В	15.5	
Intersection Summary		Ma9 0.63	Average 15.7	В	-	Max 0.91	Average 23.1	С	-	

mai qui	Warquis Drive Weekday AM Peak Hour Weekday PM Peak Hour												
			Weekday A	M Peak I	lour	Weekday PM Peak Hour							
Mov	Movement		Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)				
	LT	0.88	100.9	F	144.6	0.86	9104.1	F	125.0				
SB	Thru	0.85	40.8	D	322.7	0.59	31.6	С	188.6				
	RT	0.08	0.9	А	2.4	0.11	3.0	А	9.1				
	LT	0.47	87.2	F	32.1	0.68	90.3	F	52.2				
NB	Thru	0.43	36.2	D	113.8	1.09	93.7	F	436.7				
	RT	0.34	4.2	А	19.8	0.16	5.2	А	14.1				
	LT	0.30	52.7	D	35.3	1.00	113.8	F	130.4				
EB	Thru	1.28	204.1	F	232.9	2.29	617.5	F	477.8				
	RT	1.28	204.1	F	232.9	2.29	617.5	F	477.8				
	LT	0.56	62.5	Е	46.4	0.82	87.3	F	76.1				
WB	Thru	0.58	67.0	Е	72.5	1.31	198.0	F	191.4				
	RT	0.58	67.0	E	72.5	1.31	198.0	F	191.4				
Intersection Summary		Max 1.28	Average 59.9	Е	-	Max 2.29	Average 163.4	F	-				

Marquis Drive and Idylwyld Drive

Marquis Drive and Highway 16

		I	Neekday A	M Peak H	lour	Weekday PM Peak Hour				
Mo	ovement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)	
	LT	0.62	51.6	D	57.1	0.47	48.7	D	37.2	
SB	Thru	0.53	36.0	С	73.0	0.33	28.4	С	58.9	
	RT	0.53	36.0	С	73.0	0.33	28.4	С	58.9	
NB	LT	0.36	42.5	D	37.1	0.17	41.2	D	17.1	
IND	Thru	0.28	32.8	С	39.5	0.51	33.7	С	69.1	
EB	LT/Thru/RT	0.56	46.4	D	51.0	0.58	40.3	D	48.1	
	LT	0.17	43.1	D	17.8	0.30	43.0	D	28.3	
WB	Thru	0.44	48.8	D	40.1	0.46	46.4	D	41.0	
	RT	0.26	1.7	А	0	0.54	11.5	В	21.0	
Intersection Summary		Max 0.62	Average 37.4	D	-	Max 0.58	Average 32.3	С	-	

51 st Str	eet and V	Narmar	n Road						
			Weekday A	M Peak I	Hour	Weekday PM Peak Hour			
Μον	ement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
	LT	0.36	60.2	Е	29.1	0.68	49.0	D	51.3
SB	Thru	0.82	54.8	D	114.6	0.75	57.1	E	118.0
	RT	0.65	21.2	С	63.9	0.41	7.8	А	22.1
	LT	0.75	53.0	D	87.7	0.71	64.4	E	78.4
NB	Thru	0.39	29.0	С	67.9	0.81	52.1	D	153.5
	RT	0.19	1.9	А	5.9	0.68	23.5	С	91.5
	LT	0.46	32.2	С	41.9	0.71	17.0	В	42.4
EB	Thru	0.36	30.8	С	34.8	0.60	26.8	С	105.0
	RT	0.36	30.8	С	34.8	1.11	69.0	E	201.1
	LT	0.64	34.1	С	73.7	0.62	36.1	D	48.7
WB	Thru	0.51	38.3	D	79.5	0.33	40.9	D	66.3
	RT	0.51	38.3	D	79.5	0.24	2.3	Α	5.0
Intersection Summary		Max 0.82	Average 38.3	D	-	Max 1.11	Average 44.0	D	-

51st Street and Millar Avenue

			Weekday A	M Peak H	lour	1	Neekday P	M Peak H	lour
Mov	ement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
	LT								
SB	Thru	0.78	52.7	D	86.2	1.83	412.9	F	279.5
	RT								
	LT								
NB	Thru	0.84	60.4	Е	95.2	2.05	326.3	F	184.8
	RT								
	LT	0.84	64.4	Е	78.2	0.62	36.3	D	44.4
EB	Thru	0.35	32.6	С	50.4	0.93	57.5	Е	193.5
	RT	0.35	32.6	С	50.4	0.93	57.5	Е	193.5
	LT	0.53	15.0	В	36.8	0.62	46.8	D	48.4
WB	Thru	0.81	27.1	С	135.5	0.54	54.3	D	114.3
	RT	0.81	27.1	С	135.5	0.54	54.3	D	114.3
-	section nmary	Max 0.84	Average 38.7	D	-	Max 1.83	Average 177.5	F	-

			Weekday A	M Peak H	lour		Neekday P	M Peak H	lour
Μον	rement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
SB	LT	0.65	65.1	Е	64.4	0.63	60.7	Е	73.8
30	RT	0.24	1.7	А	0	0.53	20.8	С	36.5
NB	LT	0.72	86.1	F	52.2	0.72	76.4	Е	75.6
IND	RT	0.62	34.4	С	36.7	0.67	41.8	D	56.4
	LT	0.60	59.9	Е	78.5	0.53	62.7	Е	74.6
EB	Thru	0.58	4.5	А	52.6	0.68	18.0	В	42.5
	RT	0.71	10.5	В	45.6	0.68	18.0	В	42.5
	LT	0.63	66.2	Е	52.3	0.70	49.9	Е	48.8
WB	Thru	0.61	27.1	С	60.0	1.05	71.1	F	177.0
VVD	RT	0.61	27.1	С	60.0	1.05	71.1	F	177.0
	section nmary	Max 0.72	Average 20.7	С	-	Max 1.05	Average 55.0	Е	-

Circle Drive and Idylwyld Drive

Attridge Drive and Central Avenue

			Neekday A	M Peak H	lour		Weekday P	M Peak H	lour
Mov	ement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
	LT	0.10	62.2	E	12.4	0.42	88.5	F	68.3
SB	Thru	0.43	67.6	Е	32.2	0.53	87.2	F	77.8
	RT	0.71	2.8	А	0	0.85	25.0	С	73.7
	LT	0.83	80.0	Е	121.2	0.75	100.9	F	143.4
NB	Thru	0.80	66.7	Е	97.1	0.74	87.4	Е	124.4
	RT	0.80	66.7	Е	97.1	0.74	87.4	D	124.4
	LT	0.68	74.9	Е	37.0	0.81	80.2	F	193.1
EB	Thru	0.36	23.9	С	84.4	0.99	72.9	Е	578.4
	RT	0.19	3.6	А	13.1	0.92	54.2	D	457.8
	LT	0.20	54.3	D	7.7	0.32	82.1	F	58.5
WB	Thru	0.88	33.0	С	290.4	0.79	65.4	Е	325.3
	RT	0.05	0.1	А	0	0.08	5.0	А	5.8
	section nmary	Max 0.88	Average 33.0	С	-	Max 0.99	Average 68.2	E	-

			Weekday A	M Peak I	lour		Weekday P	M Peak H	lour
Μον	ement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
	LT	0.43	45.6	D	20.8	0.28	52.3	D	16.6
SB	Thru	0.59	18.7	В	23.1	0.46	22.1	С	17.4
	RT	0.59	18.7	В	23.1	0.46	22.1	С	17.4
	LT	0.83	51.1	D	53.3	0.51	42.0	D	41.0
NB	Thru	0.25	24.3	С	25.7	0.05	33.0	С	7.9
	RT	0.16	4.4	А	25.7	0.28	7.8	А	14.2
	LT	0.56	21.6	С	29.7	0.36	9.6	А	16.8
EB	Thru	0.50	19.7	В	72.7	0.85	27.8	С	207.8
	RT	0.50	19.7	В	72.7	0.85	27.8	С	207.8
	LT	0.22	10.4	В	12.5	0.48	34.4	С	18.9
WB	Thru	0.83	26.8	С	150.6	0.51	9.1	А	75.2
	RT	0.20	3.3	А	6.1	0.51	0.2	А	0.2
	section nmary	Max 0.83	Average 24.0	С	-	Max 0.85	Average 21.4	С	-

Attridge Drive and Berini Drive

McOrmond Drive and Kerr Road/Stensrud Road

		V	Veekday Al	M Peak H	Hour	N N	Veekday P	M Peak H	lour
Movem	ent	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
SB	LT	0.12	12.2	В	10.2	0.46	16.8	В	25.4
(McOrmond	Thru	0.59	26.5	С	76.1	0.61	34.1	С	104.4
Dr)	RT	0.08	0.2	А	0	0.25	7.4	А	16.9
NB	LT	0.36	14.6	В	20.8	0.74	22.2	С	106.1
(McOrmond	Thru	0.38	21.6	С	51.1	0.58	19.7	В	119.4
Dr)	RT	0.18	4.6	А	10.7	0.48	5.1	А	33.8
EB	LT	0.19	19.4	В	21.9	0.27	34.1	С	28.6
	Thru	0.05	17.5	В	9.8	0.16	31.6	С	23.4
(Kerr Rd)	RT	0.53	4.3	А	18.4	0.47	6.7	А	19.1
WB	LT	0.75	34.2	С	94.2	0.72	48.8	D	72.4
(Stensrud	Thru	0.06	17.6	В	10.9	0.14	31.4	С	21.5
Rd)	RT	0.27	4.0	А	12.5	0.23	5.9	А	10.4
Intersec Summa		Max 0.75	Average 18.7	В	-	Max 0.74	Average 21.4	С	-

Appendix 2: Intersection Analysis – Unsignalized Intersections

			Weekday A	M Peak H	lour	1	Weekday P	M Peak H	lour
Mov	ement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
SB	LT	0.02	8.3	А	0.6	0.09	9.8	А	2.2
30	Thru	0.17	0	А	0	0.24	0	А	0
NB	Thru	0.12	0	А	0	0.24	0	А	0
IND	RT	0.02	0	А	0	0.08	0	А	0
WB	LT	0.42	23.8	С	15.3	0.52	59.9	F	18.7
VVD	RT	0.09	10.0	А	2.3	0.11	11.7	В	2.8
	section nmary	Max 0.42	Average 3.3	Α	-	Max 0.52	Average 2.8	Α	-

McOrmond Drive and Stensrud Road (north intersection)

Central Avenue and Reid Road/Rossmo Road

		١	Neekday A	M Peak I	lour	1	Neekday P	y PM Peak Hour		
Mc	ovement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)	
SB	LT/Thru	0.03	1.1	А	0.7	0.18	4.2	А	4.9	
	RT	0.03	0	А	0	0.07	0	А	0	
NB	LT/Thru/RT	0.01	0.2	А	0.2	0.05	1.2	А	1.1	
EB	LT/Thru/RT	0.52	44.8	Е	20.1	1.17	251.6	F	50.4	
WB	LT/Thru/RT	0.28	16.3	С	8.6	0.36	33.0	D	50.4	
	ersection ummary	Max 0.52	Average 5.5	Α	-	Max 1.17	Average 16.5	С	-	

Lowe Road and Nelson Road

		V	Veekday A	M Peak I	Hour	V	Veekday P	M Peak H	lour
Mo	ovement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
SB	LT/Thru/RT	NA	24.7	С	NA	NA	15.7	С	NA
NB	LT/Thru/RT	NA	14.2	В	NA	NA	26.1	D	NA
EB	LT/Thru/RT	NA	14.7	В	NA	NA	12.7	В	NA
WB	LT/Thru/RT	NA	16.9	С	NA	NA	19.3	С	NA
	ersection ummary	0.61	18.9	С	NA	0.63	20.4	С	NA

		V	Veekday A	M Peak I	Hour	V	Veekday P	M Peak H	lour
Мс	ovement	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
SB	All movements	0.02	0.6	А	0	0.04	1.3	А	1
ND	LT / Thru	0.16	5.0	Α	4	0.01	0.3	Α	0
NB	RT	0.07	0	Α	0	0.09	0	Α	0
EB	All movements	0.11	13.4	В	3	0.07	12.9	В	2
WB	All movements	0.34	36.8	Е	10	0.71	45.6	Е	37
_	ersection ummary	0.60	4.8	В	NA	0.62	8.7	В	NA

Lowe Road and Ludlow Street

Kerr Road and Kenderdine Road

		W	eekday AN	I Peak	Hour		Weekday F	PM Peak H	our
Move	ment	v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)
SEB (Kenderdine Rd)	LT/Thru/RT	0.10	9.0	A	-	0.34	13.5	В	-
NWB (Kenderdine Rd)	LT/Thru/RT	0.44	10.8	В	-	0.42	13.8	В	-
NEB	LT	0.18	8.8	Α	-	0.21	10.7	В	-
(Kerr Rd)	Thru/RT	0.18	8.7	Α	-	0.20	10.4	В	-
SWB	LT/Thru	0.17	9.2	Α	-	1.02	68.3	F	-
(Kerr Rd)	RT	0.02	7.1	Α	-	0.10	8.1	А	-
Interse Sumr		Max 0.44	Average 9.8	Α	-	Max 1.02	Average 37.1	Е	-

Transportation

Lowe Road	d an	d Ne	elso	n Ro	ad												
Main Street (name)		Nelson				Direc	tion (EV	V or NS)	EW		Road Au	uthority:	:		City of Sa	skatoon	
Side Street (name)		Lowe				Direc	tion (EV	V or NS)	NS			City			Saska	toon	
Quadrant / Int #				Co	mments						Analys	is Date:	:		2019 Aug	27, Tue	
for Warrant Calculation	CE	IECK SHI	EET								Cou	nt Date:			2019 Apr	16, Tue	
Results, please hit 'Page Down'				_						Da	te Entry	Format:	:		(yyyy-m	m-dd)	
								gna	nes	1							
Lane Configuration		Excl LT	Th & LT	Through	Th+RT+LT	Th & RT	Excl RT	UpStream Signa (m)	# of Thru Lanes								
Nelson Nelson	WB EB				1				1				Demogra		/ Challenged	(y/n)	
Lowe	NB				1				1	1			Senior's C	omplex	Challenged	(y/n)	n n
Lowe Are the Low														a Populatio		(y/n) (#)	n 250,000
Are the Low	e SB right					ents? (y/n)	n						Central Bu	isiness Distr	ict	(y/n)	n
Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)												
Nelson Lowe	EW NS	50 50	20.0%	y y													
Set Peak Hours													Ped1	Ped2	Ped3	Ped4	
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW	
7.00.0.00	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side	
7:00 - 8:00 8:00 - 9:00	13 68	48 80	21 61	45	215 226	27 142	76 100	37 134	18 27	4 38	19 107	7 72	3	3	4 8	3 43	
11:30 - 12:30	21	130	94	44	125	9	119	32	56	28	71	39	10	4	22	10	
12:30 - 13:30	38	105	93	34	151	32	173	74	58	14	46	25	11	6	21	22	
4:00 - 5:00 5:00 - 6:00	22 41	223 235	125 120	60 49	132 148	15 32	125 149	44 60	90 115	37	66 68	15 25	4	6 4	23 27	14	
Total (6-hour peak)	203	821	514	273	997	257	742	381	364	134	377	183	43	24	105	109	
Turning Movements					ſ	SB	1	Lowe	North>						Γ (X _{v-p})		
						255			NB	-			W =	1	12	108	4
				Ped1	RT	ΗT	Ľ	1	▶ 220		•					Veh	Ped
				L +	43	166	46		\wedge				Warı	anted			
				1				/			61	RT		1	_	RESET S	SHEET
	<	WB	140	•				\checkmark			64	TH	248	WB			
	Nelson						\prec	\rightarrow			124	LT					
			LT	22				$\left\langle \right\rangle$	$\left \right\rangle$				Nelson				
	EB	116	ТН	63						/		194	EB	>			
			RT	31		\bigvee		34	137	86	4						
				·	[320]	LT	TH	RT	Ped2						
						SB	J		256]	ц						
						v			NB]							

Lowe Roa	d an	d Lu	Idlo	w St	reet												
Main Street (name))	Lowe R	d			Direc	tion (EV	V or NS)	NS		Road A	uthority:			City of Sa	skatoon	
Side Street (name)) 1	Ludlow S	St			Direc	tion (EV	V or NS)	EW			City			Saska	toon	
Quadrant / Int #	ŧ			Co	omments						Analy	sis Date:	:		2019 Sep 2	11, Wed	
for Warrant Calculation	CI	IECK SH	EET								Cou	nt Date:			2019 Apr 1	17. Wed	
Results, please hit 'Page Down'										Da		Format:			(yyyy-m		
Down	1			1			1	g	ş		u Enu y	r or mat.			(yyyy-m	iii-uu)	
					L			UpStream Signa (m)	# of Thru Lanes								
Lane Configuration		Excl LT	Th & LT	Through	Th+RT+LT	& RT	Excl RT	Stream	f Thm								
Lowe Rd	NB	Exc	_≓ 1	-df	Ē	Th &	EXC 1	n (ii	0 # 1				Demogra	nhice			
Lowe Rd	SB		1		1		1		1				Elem. Scho	ool/Mobilit	y Challenged	(y/n)	n
Ludlow St Ludlow St	WB EB				1			+					Senior's C Pathway to			(y/n) (y/n)	n y
Are the Ludlow S Are the Ludlow								-					Metro Are Central Bu	ea Populatio		(#) (y/n)	250,000 n
Other input	St ED tight	Speed	Truck	Bus Rt	Median		,	1					Contra De	54655 550	iiit	(),)	
Lowe Rd	NS	(Km/h) 50	% 2.0%	(y/n) y	(m) 0.0	r											
Ludlow St	EW	50	2.0%	n	0.0									r		,	
Set Peak Hours				1						1			Ped1	Ped2	Ped3	Ped4	
Traffic Input	LT	NB Th	RT	LT	SB Th	RT	LT	WB Th	RT	LT	EB Th	RT	NS W Side	NS E Side	EW N Side	EW S Side	
7:00 - 8:00	11	74	84	16	301	2	48	1	0	0	0	4	4	2	1	2	
8:00 - 9:00	165	185	107	19	325	56	47	4	3	2	5	43	4	2	1	6	
11:30 - 12:30 12:30 - 13:30	17 70	171 173	156 195	32 42	252 289	4	143 148	10	8	16 13	6 18	61 37	15 26	3 10	25	15 67	
4:00 - 5:00	11	285	170	28	263	2	180	1	4	8	5	22	20	6	6	3	
5:00 - 6:00	21	331	135	39	280	15	132	4	5	6	5	20	1	8	1	2	
Total (6-hour peak) Average (6-hour peak)	295 49	1,219 203	847 141	176 29	1,710 285	126 21	698 116	38 6	27 5	45 8	39 7	187 31	71 12	31 5	45 8	95 16	
hour Peak Turning								Ludlow St			W =	[C _{bt} (X	(_{v-v}) / K	K ₁ + (I	F (X _{v-p})	L) / K ₂] x C _i
						7 WB]	Ludlow St	٨		W =	[C _{bt} (X					
Turning						127 WB]	Ludlow St	EB >	1	W =	[C _{bt} (X	(v-v) / K W =		F (X _{v-p}) }	L) / K ₂ 67] x C _i 19
Turning				Ped3	RT		LT [Ludlow St			W =	[C _{bt} (X					19
Turning				8 Ped3	5 RT	127	116 LT	Ludlow St	EB		₩ =	[C _{bt} (X	W =			67	19
Turning				∞		TH 127		Ludlow St	EB		W =	[C _{bt} (X	W =		86	67	19 Ped
Turning Movements	- North	NB	215	∞		TH 127		Ludlow St	EB		•	1	W =		86	67 Veh	19 Ped
Turning Movements	- North Lowe R		215	∞		TH 127		Ludlow St	EB		• 141	RT	W =	Warı	86	67 Veh	19 Ped
Turning Movements			215 LT	∞		TH 127		Ludlow St	EB		1 41 203	RT	W =	Warı NB	86	67 Veh	19 Ped
Turning Movements	Lowe R	d	LT	29		TH 127		Ludlow St	EB		1 41 203	RT TH LT	W = NOT 394	Wari	86	67 Veh	19 Ped
Turning Movements			LT TH	29 285		TH 127		Ludlow St	EB		1 41 203	RT	W = NOT 394	Wari	86	67 Veh	19 Ped
Turning Movements	Lowe R	d	LT	29		TH 127			117 EB		141 203 49	RT TH LT	W = NOT 394	Wari	86	67 Veh	19 Ped
Turning Movements	Lowe R	d	LT TH	29 285		6 TH 127		0	7 177 EB		141 203 49	RT TH LT	W = NOT 394	Wari	86	67 Veh	19 Ped
Turning Movements	Lowe R	d	LT TH	29 285		77 6 TH 127			TH 7 EB	RT 31	141 203 49	RT TH LT	W = NOT 394	Wari	86	67 Veh	19 Ped
Turning Movements	Lowe R	d	LT TH	29 285		6 TH 127		0	7 177 EB		141 203 49	RT TH LT	W = NOT 394	Wari	86	67 Veh	19 Ped

у 250,000

Main Server (name) Kerr Kerr EV Kerr	M • G • · · · · ·	and	W.		1		D .			DIT		n • ·				a		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-							Road A						
Nome CHECK SHEEL Control total			.enderdii	ne	-	I	Direc	tion (EV	V or NS)	NS								
Read: See 18 Pige Date Entry Forme: (yyyyen-dd) Inter Configuration Inter Configuration Total Inter Configuration Inter Configuration Configuration Inter Configuration Inter Configuration Inter Configuration <td>-</td> <td></td> <td></td> <td></td> <td>Co</td> <td>mments</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td colspan="3"> · ·</td> <td></td> <td></td>	-				Co	mments								· ·				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CH	IECK SHI	EET								Сош	nt Date:)9, Tue	
$ \frac{k m}{k m} = \frac{v_1}{k} \frac{v_1}{k} \frac{1}{k} \frac$	Down'										Dat	e Entry	Format:			(yyyy-mi	m-dd)	
$ \frac{k m}{k m} = \frac{v_1}{k} \frac{v_1}{k} \frac{1}{k} \frac$		l				Ę			ı Signa	Lanes								
$ \frac{k crit}{k crit} = \frac{1}{10} + \frac{1}{1} + $	Lane Configuration		Excl LT	Th & LT	Through	Th+RT+I	~	Excl RT	UpStrean (m)	# of Thm								
							1	1								Challenged	(v/n)	n
	Kenderdine	NB					•		-	2	I			Senior's C	omplex	Challenged	(y/n)	n
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Are the Kenderdin	ne NB right t				ugh moveme			-					Metro Are	a Populatio		(#)	
$\frac{1}{120} \cdot \frac{1}{120} \cdot \frac{1}{120} \cdot \frac{1}{120} \cdot \frac{1}{100} \cdot \frac{1}$		ne SB right t					ents? (y/n)	n]					Central Bu	siness Distr	ict	(y/n)	n
Note that Note of the second se	-		(Km/h)	%	(y/n)	(m)												
Transfer Input NB SB WB EB NS NS EW EW 111 11						0.0												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Set Peak Hours													Ped1	Ped2	Ped3	Ped4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Traffic Input																	
$\frac{80 - 900}{1120 + 120} + \frac{12}{120} + 1$	7:00 - 8:00																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												183				5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	2	
Total lower peak Average 6- hour Peak Turning Movements 29 160 1.24 224 43 865 642 177 54 977 99 88 34 44 5 Average 6- hour Peak Turning Movements 5 184 184 30 37 7 144 114 114 166 8 6 6 7 1 Movements 99 90 156 8 6 6 0 6 6 W = [Cbd(Xv,v) / K_1 + (F (Xv,v) L) / K_2] x C_i 99 99 90 10																	2	
Average (4-bourpeak) 5 28 194 39 37 7 144 114 30 9 156 8 6 6 7 1 Average 6- hour Peak Turning Movements $U = [C_{bt}(X_{v,v}) / K_1 + (F(X_{v,p}) L) / K_2] x C_i$ $W = [C_{bt}(X_{v,v}) / K_1 + (F(X_{v,p}) L) / K_2] x C_i$ $W = 66$ 60 6 6 6 6 6 6 6 7 1 Movements $\frac{12}{2}$ $\frac{11}{2}$ $\frac{12}{30}$ $\frac{12}{2}$ <			46	165		73			190			146	12		14	6		
Average 6- hour Peak Turning Movements $W = [C_{bl}(X_{v,v})/K_1 + (F(X_{v,p})L)/K_2] \times C_1$ $W = 66 60 6$ $Veh Ped$ $NOT Warranted$ $WB 126$ $V = 66 60 6$ $Veh Ped$ $NOT Warranted$ $RT RESET SHEET$ $H 144 LT$ $H 287 WB$ $H = 173 H 156 G$ $H 173 H 156 G$																		
$ \begin{array}{c} \hline \hline$						[]						W –		66	60	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Ξ]			•• -		00		
<pre></pre>						22 22	E	E	ī	99							Veh	Ped
<pre>< WB 126</pre> <pre></pre> <pre>Kerr</pre> <pre>LT 9</pre> <pre>Kerr</pre> <pre>EB 173 TH</pre> <pre>156 H</pre> <pre>Kerr</pre> <pre>Kerr</pre> <pre>EB 173 TH</pre> <pre>156 H</pre> <pre>Kerr</pre> <pre>S</pre> <pre>S<!--</th--><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>↑</th><th>1</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th></pre>										↑	1	1						
Kerr LT B IT						-	37	39]	NOT	Warr	anted		
$EB \qquad 173 \qquad TH \qquad 9 \qquad Kerr \qquad Kerr \qquad 061 \qquad F81 \qquad 9 \qquad F81 \qquad 9 \qquad F81 $						2	37	39				30	RT	NOT	Warr	anted	RESET S	SHEET
EB 173 TH 156 RT 8 917 917 156 917 156 917 156 917 156 917 156 156 156 156 156 156 156 156		<	WB	126		2	37	39								anted	RESET :	SHEET
SB Ped2 Ped2 Ped2 Ped2 Ped2 Ped2 Ped2 Ped2			WB	126			37	39				114	ТН			anted	RESET :	SHEET
SB 190 RT 128 RT 184 Ped2 6 Ped2 6			WB		•] •		37	39				114	ТН	287		anted	RESET	SHEET
SB 190 ▲ ITT 216 TT Ped2		Kerr		LT	9		31	39				114	TH LT	287 Kerr	WB	anted	RESET	SHEET
SB 216		Kerr		LT TH	9 156		31	30				114	TH LT	287 Kerr	WB	anted	RESET	SHEET
· · · · · · · · · · · · · · · · · · ·		Kerr		LT TH	9 156		37	30	5	28	184	114	TH LT	287 Kerr	WB	anted	RESET .	SHEET
v 🛱		Kerr		LT TH	9 156			30				114 144	TH LT	287 Kerr	WB	anted	RESET	SHEET
		Kerr		LT TH	9 156			30		ТН		114 144	TH LT	287 Kerr	WB	anted	RESET	SHEET

Appendix 4: Circle Drive and Idylwyld Drive Interchange

Background:

In August 2010, the City of Saskatoon retained Hatch Mott MacDonald to review the design of the Idylwyld Drive/Circle Drive interchange in an effort to identify opportunities to improve its operation and function, as well as the operation and function of the Circle Drive North corridor between Millar Avenue and Avenue C.

The Administration brought a report to the Planning and Operations Committee on March 6, 2012 recommending:

1. "That the Idylwyld Drive – Circle Drive Functional Design Study – Final Report be approved in principle; and

2. That the Administration report further with respect to the funding and/or timing of the implementation of the recommendations from the Idylwyld Drive – Circle Drive Functional Design Study – Final Report."

The Administration proposed the following course of action:

1) That the Administration continue to work with the Province on the development of the Saskatoon Freeway as the preferred commercial vehicle route (to address capacity issues related to truck movements at this interchange).

• The functional planning study is currently underway.

2) That the Administration investigate the potential to improve the Warman Road and 51st Street corridors as a means to relieve the operational problems at the interchange and along the corridor.

- The intersection of Warman Road and 51st Street was improved in 2016.
- The functional planning study for intersection improvements at 51st Street and Millar Avenue will begin stakeholder engagement in 2020.

3) That the Administration create a capital budget submission to undertake short term ramp improvements at the interchange.

• This work was delayed to wait for the opening of the Chief Mistawasis Bridge.

4) That the Administration undertake further investigations into the design of a "Single Point Urban Interchange" at this location.

• This work was delayed to wait for the opening of the Chief Mistawasis Bridge. Table A4-1 illustrates the LOS with existing traffic volumes.

Movement			Neekday A	M Peak H	lour	Weekday PM Peak Hour					
		v/c ratio	Delay (s)	LOS	Queue (m)	v/c ratio	Delay (s)	LOS	Queue (m)		
SB	LT	0.74	48.5	D	40.8	0.86	59.3	Е	53.5		
	Thru	-	-	-	-	-	-	-	-		
	RT	0.06	0	А	0	0.13	0.2	А	0		
	LT	0.50	43.6	D	36.2	0.77	60.5	Ш	61.1		
NB	Thru	-	-	-	-	-	-	-	-		
	RT	0.10	0	А	0	0.13	0.2	А	0		
	LT	0.73	49.1	D	55.3	0.73	48.9	D	54.8		
EB	Thru	0.81	21.9	С	159.0	0.78	21.9	С	115.3		
	RT	0.16	2.8	А	9.5	0.22	2.7	А	10.6		
	LT	0.52	45.0	D	33.3	0.65	47.9	D	47.1		
WB	Thru	0.51	18.9	В	63.6	0.81	25.4	С	123.2		
	RT	0.47	3.8	А	16.4	0.56	4.2	А	17.8		
	Intersection Summary		Average 21.5	С	-	Max 0.81	Average 24.0	С	-		

 Table A4-1: Circle Drive and Idylwyld Drive – Single Point Urban Interchange

5) That the Administration continue to monitor and assess the effects on traffic patterns arising from the completion of Circle Drive South and alternate routing.

- Circle Drive South and the Gordie Howe Bridge opened in 2011 and a follow-up study was completed in 2012.
- The Chief Mistawasis Bridge opened October 2, 2018.

The Administration does not recommend proceeding to the development of a capital project for the short-term ramp improvements at this time. During Phase 1 of the Saskatoon Freeway Functional Planning Study a significant change to the regional highway network is proposed – relocating Highway 11 from Idylwyld Drive to Wanuskewin Road near the northern city limits. This has the potential to move some commercial truck traffic from the Circle Drive and Idylwyld Drive interchange further east to the Warman Road interchange as well as shift some commuter traffic in a similar manner. The Administration is working with the Ministry and the Ministry's consultant on the functional plan for the Saskatoon Freeway, as planning progresses to a recommendation the Administration will revisit the Single Point Urban Interchange at this location.

